247. Constante diélectrique, indice de réfraction et densité des solutions diluées de Al_2Br_6 dans $CS_2 + C_6H_6$ par Desimir Janjic et Bernard-P. Susz

(3 X 60)

Introduction

L'existence de composés d'addition entre C_6H_6 et Al_2X_6 (X = halogène) a été envisagée à la suite de la synthèse d'alcoylation de FRIEDEL-CRAFTS. GUSTAVSON¹) fut le premier à étudier l'action de Al_2Br_6 sur C_6H_6 en faisant passer un courant de HBr sec dans une solution de Al_2Br_6 dans le benzène; il a cru préparer ainsi un composé Al_2Br_6 , 6 C_6H_6 , formant une huile rougeâtre à la température ordinaire. Répétant ces expériences, MENSHUTKIN²) constata que la composition de la couche huileuse varie avec le temps et la température et qu'elle ne renferme pas le composé cité; il montra que l'introduction de HBr dans le mélange $Al_2Br_6 + C_6H_6$ ne conduit pas au composé binaire comme l'avait cru GUSTAVSON, mais forme des composés ternaires. Les travaux de NORRIS & INGAHAM³), ELEY & KING⁴), BROWN & WALLACE⁵) ont confirmé le point de vue de MENSHUTKIN. Pour étudier la formation de composés entre Al_9Br_6 et C_6H_6 seuls, il faut donc travailler en l'absence de HBr et de l'humidité.

C'est ainsi que l'aualyse thermique du système binaire $Al_2Br_6 + C_6H_6$ a permis à PLOTNIKOV & GRATSIANSKII⁶), ELEY & KING⁴) et FAIRBROTHER & FIELD⁷) de découvrir un composé d'addition $AlBr_3, C_6H_6$ sous forme de cristaux jaune-pâle, F. 37°. Cependant VAN DYKE⁸) attribue à ce même complexe une formule dimère, en se basant sur une étude cryoscopique des solutions diluées de bromure d'aluminium dans le benzène, étude qui, tout en lui permettant d'isoler le composé d'addition, le conduit à la formule Al_2Br_6 pour le bromure d'aluminium non complexé dans cette solution. Diverses méthodes physico-chimiques: réfraction moléculaire (KORSHAK et coll.⁹), parachor (POPICK & LEHRMANN¹⁰)), ébullioscopie et cryoscopie (ULICH¹¹) et NESPITAL¹²)), ont également permis de prouver que le bromure d'aluminium se présente essentiellement sous la forme dimère dans C₆H₆ lorsque sa concentration reste supérieure à une fraction molaire égale à 0,002; audessous de cette concentration, c'est la forme du monomère AlBr₃ qui devient prédominante.

¹) G. GUSTAVSON, *ж* 12, 1 (1880); Chem. Zbl. 1880, 584; J. prakt. Chem. 42, 501 (1890).

⁴) D. D. ELEY & P. J. KING, Trans. Farad. Soc. 47, 1287 (1951).

⁵) H. C. BROWN & W. J. WALLACE, J. Amer. chem. Soc. 75, 6265 (1953).

- ⁷) F. FAIRBROTHER & K. FIELD, J. chem. Soc. 1956, 2614.
- ⁸) R. E. VAN DYKE, J. Amer. chem. Soc. 72, 3619 (1950).
- ⁹) V. V. Korshak, N. N. Lebedeev & S. D. Fedoseev, Z. obšč. Chim. 17, 575 (1947).
- ¹⁰) L. POPICK & A. LEHRMANN, J. Amer. chem. Soc. 61, 3237 (1939).
- ¹¹) H. ULICH, Z. physikal. Chem. (BODENSTEIN Festband), 423 (1931).
- ¹²) W. NESPITAL, Z. physikal. Chem. B 16, 153 (1932).

²) B. N. MENSHUTKIN, **K.** 41, 1089 (1909).

³) J. F. Norris & I. N. Ingaham, J. Amer. chem. Soc. 62, 1928 (1940).

⁶) V. A. PLOTNIKOV & N. N. GRATSIANSKU, Bull. Acad. Sci. U.R.R.S., Classe Sci. chim. 101, 4 (1947).

Signalons que par l'étude de la tension de vapeur du système binaire $Al_2Br_6 + C_6H_6$ BROWN & WALLACE⁵) ont montré qu'à 17,7° il se forme encore un autre complexe solide: Al_2Br_6, C_6H_6 , déjà signalé par ELEV & KING⁴) qui affirment son existence en s'appuyant sur la bande d'absorption $\lambda = 2875$ Å, attribuée au transfert électronique $C_6H_6, Al_2Br_6 \leftrightarrow C_6H_6^+$, $Al_2Br_6^-$, et pour laquelle la loi de BEER se vérifie.

Si FAIRBROTHER & FIELD⁷) ont confirmé les résultats d'ELEY & KING, LUTHER & POCKELS¹³), par contre, nient absolument l'existence de tout complexe entre C₆H₆ et Al₂Br₆ en solution benzénique. Il est pourtant difficile de douter de l'existence de ces complexes, car on peut apporter encore bien d'autres preuves de leur formation, d'ordre expérimental aussi bien que théorique. C'est ainsi que TERENIN & YARO-SLAVSKII¹⁴) avaient déjà signalé qu'en phase liquide une interaction existe entre C₆H₆ et Al₂Br₆, décelée par l'étude du spectre d'absorption IR. Et ce fut surtout l'augmentation considérable de la polarisation moléculaire du bromure d'aluminium dans C₆H₆ ($P_{AlBr_9} \cong 550 \text{ cm}^3/_{mole}$ pour dilution infinie) qui a conduit NESPITAL¹²), ULICH & NESPITAL¹⁵) et FOURKY & RIZK¹⁶) à envisager l'existence d'un complexe C₆H₆, AlBr₃, de moment de dipôle très élevé ($\mu = 4,89 \text{ D}^{15}$) et $\mu = 5,14 \text{ D}^{16}$)), alors que le moment du bromure d'aluminium est nul dans CS₂ pour toute concentration¹⁵).

Ultérieurement, MULLIKEN¹⁷) a démontré par la théorie du transfert de charge que les complexes entre C₆H₆ et le bromure d'aluminium peuvent exister, la liaison, à vrai dire labile, étant assurée par l'intermédiaire des électrons π du donneur aromatique sans que la molécule C₆H₆ perde d'une manière appréciable son énergie de résonance. Cette nouvelle distribution des charges électriques négatives dans C₆H₆ erait la cause principale du moment de dipôle élevé de C₆H₆, AlBr_a.

Nous avons alors voulu voir si cette interaction entre C_6H_6 et Al_2Br_6 se poursuit dans un dissolvant non-polaire tel que CS_2 , que nous avons choisi parce que, d'une part, le dissolvant étant non-polaire, il n'exerce d'action ni sur C_6H_6 ($\mu C_6H_6 = 0$ dans CS^{18})) ni sur Al_2Br_6 ($\mu AlBr_3 = \mu Al_2Br_6 = 0$ dans CS_2^{12})). Ce choix permet, d'autre part, de réaliser une solution homogène, contenant simultanément Al_2Br_6 et C_6H_6 , où le rapport $X = moles Al_2Br_6/moles C_6H_6$ peut s'élever jusqu'à 1/2, alors que ce rapport ne peut dépasser 0,125 en l'absence de CS_2 et à la température de 20°. Quant à la méthode de détection de l'interaction entre C_6H_6 et le bromure d'aluminium dans CS_2 , nous avons utilisé la mesure de la constante diélectrique ϵ de ces solutions, en raison de la forte polarité des complexes mentionnés plus haut.

Partie expérimentale

1. Purification des produits utilisés. – Bromure d'aluminium: SIEGFRIED, resublimé deux fois sous pression réduite à 85°, jusqu'à l'obtention d'un produit blanc; F. 97,5°. – Benzène: purifié d'abord selon HALLER & MICHEL¹⁹) et ensuite selon SCHUPP & MECKE²⁰) et MECKE & Rosswog²¹).

- ¹³) H. LUTHER & G. POCKELS, Z. Elektrochem. 59, 159 (1955).
- ¹⁴) A. N. TERENIN & YAROSLAVSKII, Acta physicochim. U.R.R.S. 17, 240 (1942).
- ¹⁵) H. ULICH & W. NESPITAL, Z. Elektrochem. 37, 559 (1931).
- ¹⁶) A. R. FOURKY & H. A. RIZK, J. chem. Physics. 61, 801 (1952).
- ¹⁷) R. S. MULLIKEN, J. chem. Physics. 56, 801 (1952).
- ¹⁸) G. BRIEGLEB, Z. physikal. Chem. B 16, 276 (1932).
- ¹⁹) M. HALLER & F. MICHEL, Bull. Soc. chim. France [3], 15, 1067 (1896).
- ²⁰) R. SCHUPP & R. MECKE, Z. Elektrochem. 52, 55 (1948).
- ²¹) R. MECKE & K. Rosswog, Angew. Chem. 66, 75 (1954).

Tableaux I à III. Résultats des mesures Tableau I. $K = {}^{n}C_{e}H_{e}/{}^{m}CS_{2} = 0.0533$

$X = \frac{{}^{"}\mathrm{Al}_{2}\mathrm{Br}_{6}}{{}^{m}\mathrm{C}_{6}\mathrm{H}_{6}}$	ε_{12}	d_{12}	ⁿ D12	P_{12}	$P_{\mathbf{m}}(\mathbf{_2})$	R_{12}	$R_{\mathbf{m}}(\mathbf{_2})$
0.00000	2,6061	1,2333	1,6171	21,55	21,55	21,63	21,63
0.02062	2.6124	1,2382	1,6170	21,66	124,94	21,68	67.10
0,04118	2,6233	1,2430	1,6168	21,80	142,08	21,71	65,43
0,09145	2,6168	1,2550	1,6165	21,86	89,11	21,83	65,28
0,09173	2,6237	1,2550	1,6165	21,93	102,86	21,83	65,60
0,11942	2,6281	1,2615	1,6163	22,03	101,65	21,90	66,45
0,12301	2,6288	1,2623	1,6163	22,04	100,76	21,89	63,80
0,13744	2,6329	1,2657	1,6162	22,11	102,63	21,92	64,08
0,18519	2,6403	1,2770	1,6158	22,28	99,91	22,02	63,68
0,19768	2,6372	1,2880	1,6158	22,28	95,24	22,05	63,78
0,21433	2,6433	1,2839	1,6156	22,37	97,51	22,08	63,17
0,24181	2,6469	1,2904	1,6155	22,45	95,85	22,13	62,70
0,25816	2,6477	1,2942	1,6153	22,50	94,92	22,15	62,32
0,27830	2,6525	1,2990	1,6152	22,57	95,55	22,19	62,90
0,30693	2,6516	1,3057	1,6150	22,64	92,43	22,25	61,95
0,31515	2,6586	1,3077	1,6150	22,71	95,25	22,26	61,88
0,33455	2,6621	1,3122	1,6148	22,78	95,38	22,29	61,58
0,36124	2,6642	1,3186	1,6146	22,85	93,90	22,34	61,06
0,39676	2,6651	1,3269	1,6144	22,93	91,42	22,40	60,75
0,44052	2,6730	1,3373	1,6141	23,08	91,59	22,47	60,29
0,47636	2,6808	1,3457	1,6139	23,22	92,27	22,53	59,90
0,47959	2,6760	1,3465	1,6138	23,18	90,12	22,54	59,87
0,49065	2,6804	1,3491	1,6138	23,24	91,05	22,56	59,84
0,52432	2,6769	1,3570	1,6135	23,27	88,06	22,61	59,50
0,61454	2,6869	1,3665	1,6133	23,42	88,98	22,66	58,82
0,65435	2,7087	1,3877	1,6127	23,77	90,78	22,79	57,76

Tableau	11.	K	$= {^{n}C_{6}H_{6}}/{^{m}CS_{2}}$	= 0,10288
---------	-----	---	-----------------------------------	-----------

$X = \frac{{}^{"}\mathrm{Al}_{2}\mathrm{Br}_{6}}{{}^{"}\mathrm{C}_{6}\mathrm{H}_{6}}$	ε_{12}	d_{12}	n_{D12}	$P_{12}^{}$	$P_{\mathbf{m}}(2)$	R_{12}	$R_{m}(_{2})$
0,00000	2,5848	1,2068	1,6083	21,86		21,87	
0,02218	2,5993	1,2160	1,6081	22,09	133,14	21,97	69,77
0,07099	2,6182	1,2361	1,6077	22,48	116,76	22,07	52,78
0,10772	2,6478	1,2513	1,6074	22,92	127,30	22,33	68,20
0,14271	2,6344	1,2657	1,6070	22,94	103,93	22,46	66,53
0,17362	2,6414	1,2785	1,6068	23,21	106,68	22,57	65,85
0,21699	2,6504	1,2964	1,6064	23,37	98,14	22,72	64,79
0,23045	2,6491	1,3019	1,6063	23,41	95,59	22,77	64,72
0,27575	2,6735	1,3206	1,6059	23,80	99,28	22,92	63,64
0,30669	2,6780	1,3334	1,6056	23,97	97,74	23,04	63,76
0,34625	2,6823	1,3497	1,6053	24,12	94,15	23,13	62,10
0,34972	2,6980	1,3512	1,6052	24,45	100,21	23,30	65,30
0,43928	2,7159	1,3881	1,6044	24,69	94,12	23,35	59,70
0,46821	2,7133	1,4001	1,6042	24,78	91,61	23,45	59,62
0,51272	2,7029	1,4184	1,6038	24,81	86,45	23,56	58,92
0,54392	2,7303	1,4313	1,6035	25,14	89,88	23,63	58,23
0,54394	2,7369	1,4313	1,6035	25,21	91,04	23,62	58,20

– Sulfure de carbone: purifié selon PESTEMER²²), puis fractionné deux fois sur P_2O_5 et desséché ensuite pendant 24 h dans l'appareil décrit par SCHUPP & MECKE. – Chlorobenzène: MERCK, purifié selon MECKE & Rosswog; $n_D^{20} = 1,5248$.

2. Préparation des solutions. Toutes les solutions ont été préparées dans des flacons ERLEN-MEYER rodés, «à l'abri de l'humidité», dans la cage à gants. Toutes les manipulations: remplissage du pycnomètre, de la cellule du dipôlemètre et de la cuve de chasse du réfractomètre d'ABBE, ont également été effectuées dans la cage. Chaque mesure de ε , de d ou de n_D a été faite environ 10 min après l'addition du Al₂Br₆ à la solution diluée de C₆H₆ dans CS₂, car l'expérience montre qu'un effet prolongé de la lumière (quelques heures) provoque l'altération de ces mélanges liquides.

$\mathbf{X} = \frac{{}^{n}\mathbf{Al}_{2}\mathbf{Br}_{6}}{{}^{m}\mathbf{C}_{6}\mathbf{H}_{6}}$	ε_{12}	d_{12}	$n_{ m JD12}$	P_{12}	$P_{ m m}(_2)$	R ₁₂	$R_{\mathbf{m}}(_{2})$
0,00000	2,5627	1,1751	1,5973	22,28		22,17	
0,02248	2,5797	1,1916	1,5966	22,56	106,87	22,28	54,88
0,04202	2,5884	1,2059	1,5961	22,76	99,27	22,38	56,40
0,06544	2,6059	1,2230	1,5954	23,06	102,20	22,48	54,67
0,10195	2,6202	1,2498	1,5943	23,38	95,17	22,63	53,11
0,11112	2,6263	1,2564	1,5940	23,48	95,40	22,67	52,60
0,12074	2,6250	1,2635	1,5937	23,52	91,87	22,71	52,30
0,13650	2,6346	1,2751	1,5932	23,68	91,96	22,76	51,75
0,14508	2,6320	1,2814	1,5930	23,69	88,50	22,77	50,55
0,16173	2,6451	1,2935	1,5925	23,90	90,43	22,85	50,76
0,18839	2,6542	1,3131	1,5917	24,09	88,07	22,91	50,00
0,19671	2,6599	1,3192	1,5914	24,29	92,14	23,05	53,03
0,23114	2,6586	1,3444	1,5904	24,30	82,48	23,05	48,55
0,23944	2,6608	1,3505	1,5902	24,35	81,93	22,03	48,11
0,27022	2,6799	1,3730	1,5893	24,65	82,93	23,15	47,22
0,27300	2,6934	1,3758	1,5891	24,78	85,57	23,15	47,01
0,32620	2,7087	1,4140	1,5876	25,10	82,61	23,27	45,75
0,33120	2,7104	1,4177	1,5874	25,13	82,30	23,27	45,48
0,36338	2,7078	1,4412	1,5865	23,90	53,47	22,19	21,23
0,38875	2,7078	1,4599	1,5857	25,27	76,32	23,36	43,84
0,41800	2,7305	1,4812	1,5848	25,55	77,57	23,40	43,01
0,44657	2,7448	1,5022	1,5840	25,81	76,39	23,44	42,37
0,46933	2,7401	1,5188	1,5833	25,76	75,00	23,46	41,71
0,48709	2,7427	1,5318	1,5828	25,82	78,06	23,48	41,34
0,52878	2,7618	1,5624	1,5815	27,82	97,43	25,07	61,61

Tableau III. $K = {^{n}C_{6}H_{6}}/{^{m}CS_{2}} = 0,17730$

3. Mesure de la constante diélectrique (ε): effectuée au moyen d'un dipôlemètre²³), la solution étant placée dans la cellule de mesure, dorée intérieurement, étanche, d'une capacité d'environ 4 ml et étalonnée préalablement à 20° ± 0,02° avec du benzène spécialement purifié (ε^{20} = 2,2825) et des solutions benzène-chlorobenzène fraîchement préparées, dont la constante diélectrique admise²⁴) est: ε^{20} = 2,2825 + 3,58 x (x = fraction molaire du chlorobenzène).

4. Mesure de la densité des solutions (d): pycnomètre du type SPRENGEL-OSTWALD placé dans un thermostat constitué d'un récipient contenant de l'éthylèneglycol et d'un serpentin dans lequel circule de l'eau ($\Theta = 20^{\circ}$) provenant d'un ultra-thermostat situé à l'extérieur de la cage.

5. Mesure de l'indice de réfraction pour la raie $D(n_D)$: effectuée au moyen d'un réfractomètre d'ABBE, placé à l'intérieur de la cage et équipé d'une cuve de chasse, reliée à l'ultra-thermostat situé à l'extérieur.

- ²²) M. PESTEMER, Angew. Chem. 63, 118 (1951).
- 23) Dipôlemètre du type DM Ol WTW et cellules, don de la Société Académigue de Genève.
- ²⁴) E. FREIBER, J. SCHURZ & H. KOREN, Mh. Chem. 82, 32 (1951).

6. Résultats des mesures. L'ensemble des valeurs expérimentales de ε_{12} , d_{12} et n_{D12} pour des solutions de Al_2Br_6 dans le mélange $C_6H_6+CS_2$ à 20,0°, est consigné dans les colonnes 2, 3 et 4 des tableaux I, II et III; les quatre colonnes suivantes renferment les valeurs calculées de la polarisation et de la réfraction moléculaire des solutions (P_{12} et R_{12}) et de Al_2Br_6 ($P_m(_2)$ et $R_m(_2)$), calculées à l'aide des équations:

$$P_{12} = \frac{\varepsilon_{12} - 1}{\varepsilon_{12} + 2} \cdot \frac{M_{12}}{d_{12}} = x_1 P_{m(1)} + x_2 P_{m(2)}$$
$$R_{12} = \frac{n_{D12}^2 - 1}{n_{D12}^2 + 2} \cdot \frac{M_{12}}{d_{12}} = x_1 R_{m(1)} - x_2 R_{m(2)}$$

$$M_{12} = x_1 M_1 + x_2 M_2 =$$
 poids moléculaire de la solution (Al₂Br₆ + C₆H₆ + CS₂).

 $M_1 = x_{01} M_{01} + x_{02} M_{02} - poids$ moléculaire fictif du dissolvant ($C_6H_6 + CS_2$) où l'on admet que:

$$K = \frac{\text{moles de } C_6 H_6}{\text{moles de } CS_2} = \frac{{}^{n}C_6 H_6}{{}^{n}CS_2}$$

n'est pas modifié par l'addition du dissous (Al₂Br₆).

 $M_2 =$ poids moléculaire de Al₂Br₆

 M_{01} = poids moléculaire de C₆H₆

 M_{02} = poids moléculaire de CS₂

 x_1 = fraction molaire du dissolvant (C₆H₆ + CS₂)

 x_2 = fraction molaire du dissous (Al₂Br₆)

 $x_{01} =$ fraction molaire de C₆H₆

 x_{02} = fraction molaire de CS₂

Discussion des résultats

I. Examen de la variation de ϵ_{12} , d_{12} et n_{D12} en fonction de $X = {^nAl_2Br_6/^mC_6H_6}$. Lorsqu'on ajoute Al_2Br_6 dans CS_2 seul, la constante diélectrique varie linéairement (fig. 1), mais les diagrammes (fig. 2) qui représentent la variation de la constante diélectrique ϵ_{12} des solutions de C_6H_6 dans CS_2 , enrichies par des quantités croissantes de Al_2Br_6 , présentent les caractères suivants:

- 1) la variation nou linéaire de ε_{12} en fonction de X,
- la grande ressemblance de l'allure de ces courbes entre elles pour différentes concentrations de C₆H₆ vis-à-vis de CS₂,
- 3) l'existence de deux «paliers» et d'un minimum caractéristiques sur chacune d'elles, correspondant aux mêmes valeurs du rapport $X = {}^{n}Al_{2}Br_{6}/{}^{n}C_{6}H_{6}$, le premier «palier» étant d'autant plus marqué que le rapport X est plus élevé,
- 4) et, surtout, le fait que la fin de ces paliers, ainsi que le point minimum, correspondent précisément à des valeurs simples du rapport X, soit à des rapports formés de petits nombres entiers (Tabl. IV).

Paliers et minimum	$X = \frac{n \mathrm{Al}_2 \mathrm{Br}_6}{n \mathrm{C}_6 \mathrm{H}_6}$
Fin du premier palier	1/4
Fin du deuxième palier	3/8
Point minimum	$1/_{2}$

Tableau IV. Particularités sur les courbes $\varepsilon_{12} = f(X)$

Fig. 1. Constante diélectrique (ε_{12}) de Al_2Br_6 dans CS_2 en fonction de la fraction molaire x de Al_2Br_6

Fig. 3. Densité (d_{12}) des solutions diluées de $Al_2Br_6 \ dans \ CS_2 + C_6H_6 \ en fonction \ de$ $X = moles \ Al_2Br_6|moles \ C_6H_6$ $C_1 \ (K = 0.0533 \ Tabl. \ I)$ $C_2 \ (K = 0.1029 \ Tabl. \ II)$ $C_3 \ (K = 0.1773 \ Tabl. \ III)$

Fig. 2. Constante diélectrique (ϵ_{12}) des solutions diluées de Al_2Br_6 dans $CS_2 + C_6H_6$ en fonction de $X = moles Al_2Br_6/moles C_6H_6$ $C_1 (K = 0,0533 \text{ Tabl. I})$ $C_2 (K = 0,1029 \text{ Tabl. II})$ $C_3 (K = 0,1773 \text{ Tabl. III})$

Fig. 4. Indice de réfraction (n_{D12}) des solutions de Al_2Br_6 dans $CS_2 + C_6H_6$ en fonction de $X = moles Al_2Br_6/moles C_6H_6$ $C_1 (K = 0.0533 \text{ Tab. I})$ $C_2 (K = 0.1029 \text{ Tabl. II})$ $C_3 (K = 0.1773 \text{ Tabl. III})$

Si les courbes $\varepsilon_{12} = f(X)$ (fig. 2) relatives à toutes nos solutions présentent ces particularités remarquables (paliers et point minimum), nous constatons en revanche que la densité d_{12} (fig. 3) et l'indice de réfraction n_{D12} (fig. 4) varient linéairement en fonction de X.

L'interprétation de nos résultats expérimentaux pourrait être basée sur les conclusions qu'ont tirées de recherches analogues PANDE & BHATNAGAR²⁵) et GOREN-BEIN²⁶). Ces auteurs ont, en effet, observé des variations de même nature de la viscosité de solutions de SrX_2 (X = Cl, Br, I) dans un mélange liquide urée-eau de composition fixe (P. & B.) ou de la conductibilité électrique spécifique de solutions de Al₂Br₆ dans un mélange nitrobenzène-dibromoéthane de composition également fixe (G.). Ils pensent avoir des raisons suffisantes pour en déduire l'existence de composés d'addition de SrX_2 avec l'urée et de Al₂Br₆ avec le nitrobenzène. Remarquons que la densité des solutions qui viennent d'être citées à propos du système SrX_2 + urée + eau varie aussi linéairement avec le rapport X = moles d'urée/moles de SrX_2 et que cette différence de comportement de d_{12} et de ε_{12} se trouve ainsi confirmée pour plusieurs systèmes ternaires.

II. Réfraction moléculaire $R_{m(2)}$ de Al_2Br_6 et interaction entre Al_2Br_6 et C_6H_6 dans CS_2 . – Les tableaux I, II et III montrent que cette grandeur, calculée selon: $R_{m(2)} = (R_{12} - x_1R_{m(1)})/x_2$, varie en fonction de la concentration de Al_2Br_6 lorsque ce composé est ajouté à un mélange de rapport constant K = moles de $C_6H_6/moles$ de $CS_2 = {}^{n}C_6H_6/mCS_2$.

Or, ULICH & NESPITAL¹⁵) avaient constaté que la polarisation moléculaire $P_{m(2)}$ de Al₂Br₆ dissous dans CS₂ garde une valeur constante dans le domaine de concentration x = 0,005 à 0,1. Ils ont calculé également que le moment de dipôle de Al₂Br₆ dans CS₂ est nul pour les mêmes concentrations. On peut donc admettre que le sulfure de carbone est un dissolvant indifférent pour Al₂Br₆. Nos résultats montrent au contraire que la réfraction moléculaire $R_{m(2)}$, soit la déformabilité électronique moyenne α de Al₂Br₆, varie en fonction de sa concentration dans un mélange invariable C₆H₆ + CS₂. Une interaction entre Al₂Br₆ et C₆H₆ paraît dès lors bien établie.

III. Polarisation moléculaire $P_{m(2)}$ de Al_2Br_6 dans $CS_2 + C_6H_6$ et formation de composés d'addition entre Al_2Br_6 et C_6H_6 dans CS_2 . – Nous estimons que cette interaction entre C_6H_6 et Al_2Br_6 conduit bien à la formation de composés d'addition ayant un moment de dipôle non nul ($\mu \neq 0$). En effet, si nous comparons pour une valeur donnée de X n'importe quelle valeur numérique de $P_{m(2)}$ à celle de $R_{m(2)}$ dans l'un des tableaux I, II ou III, nous obtenons toujours un nombre positif pour la polarisation d'orientation P_{02} de Al_2Br_6 ($P_{02} = P_{m(2)} + R_{m(2)}$). Il existe donc des composés polaires formés entre Al_2Br_6 et C_6H_6 . Le moment de dipôle qui pourrait en être déduit serait à vrai dire faible. Mais le fait de négliger la polarisation atomique et les erreurs d'expérience ne nous a pas paru néanmoins capable d'expliquer la présence d'un tel moment, qui peut atteindre $\mu = 0,9$ Debye.

IV. Polarisation totale P_{12} des solutions de Al_2Br_6 dans $C_6H_6 + CS_2$ et formation de composés d'addition entre Al_2Br_6 et C_6H_6 dans CS_2 . – Si nous examinons les courbes $P_{12} = f(X)$ (fig. 5) relatives à toutes nos solutions, nous remarquons

²⁵) C. S. PANDE & M. P. BHATNAGAR, Z. anorg. allg. Chem. 295, 138 (1958).

²⁶) E. Ya. GORENBEIN, *W*, 24, 1710 (1954); Chem. Abstr. 49, 2925 (1955).

que la variation de P_{12} n'est pas linéaire, mais que l'allure de ces courbes présente une ressemblance d'autant plus marquée avec celles de $\varepsilon_{12} = f(X)$ (fig. 2) que le rapport $K = {}^{n}C_{6}H_{6}/{}^{m}CS_{2}$ est plus grand. Cette variation analogue de P_{12} et de ε_{12} avec X constitue, d'après nous, une raison supplémentaire, et d'ailleurs suffisante par elle-même, d'admettre l'existence de composés d'addition entre $C_{6}H_{6}$ et $Al_{2}Br_{6}$. Il est en effet possible de déterminer, d'après la forme des courbes P_{12} en fonction

Fig. 5. Polarisation totale (P_{12}) des solutions de Al_2Br_6 dans $CS_2 + C_6H_6$ en fonction de $X = moles Al_2Br_6/moles C_6H_6$ $C_1 (K = 0.0533 \text{ Tabl. I})$ $C_2 (K = 0.1029 \text{ Tabl. II})$ $C_3 (K = 0.1773 \text{ Tabl. III})$

Types de courbes de polarisation totale P_{12}

de la concentration d'un dissous dans un dissolvant non-polaire, si ce dissous est polaire et, dans l'affirmative, de quelle manière se produit une association dipôledipôle. Rappelons qu'il peut exister trois types des courbes de polarisation totale P_{12} en fonction de la concentration²⁷) (fig. 6):

Type I. Solutions d'un dissous de moment de dipôle faible ou nul dans un dissolvant non polaire: P_{12} varie linéairement avec la fraction molaire x du dissous. Ex.: Al₂Br₆ dans CS₂.

Type II. Solutions d'un dissous polaire dont les molécules s'associent selon le schéma II: $+___^- +__^- Ex.: C_2H_5OH$ dans C_6H_6 .

Type III. Solutions d'un dissous de fort moment de dipôle dans un dissolvant non-polaire: P_{12} croît *continuellement* avec la concentration. Les molécules du dissons s'associent selon le schéma III: + Ex.: nitrobenzène dans C_6H_6 .

Pour expliquer l'allure de nos courbes expérimentales C_1 , C_2 et C_3 de P_{12} en fonction de X (fig. 5) nous faisons les hypothèses suivantes. Nous attribuons la

²⁷) J. R. PARTINGTON, An advanced Treatise on Physical Chemistry, vol. V, p. 376-384.

variation de P_{12} en fonction de X au fait qu'il se forme successivement plusieurs composés polaires lors de l'addition progressive du bromure d'aluminium au mélange $CS_2 + C_6H_6$. L'apparition de chacun de ces composés, dont les molécules s'associent selon le schéma II ou III, est indiquée par une forte augmentation de P_{12} , d'où un ou plusieurs «arceaux» composant chaque courbe. L'ensemble de ces arceaux sur une même courbe ne fait que traduire graphiquement les trois équilibres chimiques:

$$Al_2Br_6 \xrightarrow{(1)} 2 AlBr_3$$
 (a)

$$AlBr_3 + C_6H_6 \xrightarrow{(1)} AlBr_3, C_6H_6$$
(b)

$$mAl_{2}Br_{6} + nC_{6}H_{6} \xrightarrow{(1)} (Al_{2}Br_{6})_{m}, (C_{6}H_{6})_{n}$$
(c)

2° Déplacement des équilibres dans l'intervalle de $X = \frac{1}{4}$ à $X = \frac{1}{2}$. Dès que X a atteint la valeur 1/4, le bromure d'aluminium, ajouté à nos solutions, se trouve sous sa forme dimère. Le mode d'action de ce dimère sur C_6H_6 , le nombre des composés polaires différents qui en résultent et leur type d'association II ou III, ne dépendent apparement que de la concentration du benzène dans le mélange de départ. Prenons pour exemple le cas de la solution K = 0.17730 (courbe C₃, fig. 5). Lors que nous avons ajouté du bromure d'aluminium en quantité suffisante pour que X soit égal à $1/_4$, une forte interaction se produit entre Al₂Br₆ et C₆H₆, dont le résultat est la formation d'un deuxième complexe. L'équilibre (c) se déplace dans le sens (1) et la polarisation totale P_{12} commence aussitôt à croître rapidement. Une fois dépassée la valeur $X = \frac{1}{3}$, toute addition de Al₂Br₆ provoque un accroissement très faible de P_{12} («palier»), et cela jusqu'à ce que l'on ait atteint $X = \frac{3}{8}$ environ. L'allure de la courbe C₃ comprise entre $X = \frac{1}{4}$ et $X = \frac{3}{8}$ (fig. 5) est du type II. Mais lorsque X atteint la valeur $\frac{3}{8}$, P_{12} croît de nouveau très rapidement; un troisième complexe se forme alors à son tour et ses molécules s'associent selon le type II, puisque P_{12} décrit sur C₃ entre $X = \frac{3}{8}$ et $X = \frac{1}{2}$ un arceau du type II. La formation de ce troisième complexe paraît être limitée par l'apparition d'un nouveau complexe dès que X atteint la valeur 1/2, valeur au delà de laquelle nous n'avons pas de mesures

expérimentales. L'ensemble des équilibres chimiques qui ont eu lieu dans l'intervalle de $X = \frac{1}{4}$ à $X = \frac{1}{2}$ peut être représenté par une seule équation (c).

KORSHAK, LEBEDEV & FEDOSEEV⁹) sont arrivés à la conclusion qu'un équilibre tel que (c) ne peut être déplacé que faiblement dans le sens (1), d'après les résultats obtenus au cours d'une étude sur la détermination de la réfraction moléculaire de Al_2Br_6 dans C_6H_6 seul. D'après ces auteurs, il se formerait plusieurs solvats de Al_2Br_6 dont ils n'ont pas pu préciser la composition. Nous pensons que la valeur du rapport m/n dépend de la concentration en C_6H_6 dans le mélange $CS_2 + C_6H_6$. ELEV & KING⁴), en étudiant l'absorption dans l'UV. des solutions benzéniques de Al_2Br_6 , ont signalé la formation d'un composé Al_2Br_6 , $(C_6H_6)_{n+1}$.

A la suite de notre étude, nous ne pouvons donner la composition de chaque complexe, excepté pour AlBr₃, C₆H₆. Il est cependant possible d'affirmer que ces complexes se manifestent toutes les fois que l'on trouve une brusque augmentation de la polarisation totale P_{12} des solutions, soit pour des valeurs simples du rapport X: $\frac{1}{4}$ et $\frac{1}{2}$ (K = 0,10288, courbe C₂), soit pour X: $\frac{1}{4}$, $\frac{3}{8}$ et $\frac{1}{2}$ (K = 0,17730, courbe C₃).

Nous avons récemment étudié avec J. DELMAU et G. BÉNÉ²⁸) la résonance nucléaire magnétique des solutions de Al_2Br_6 et C_6H_6 dans CS_2 préparées de la même manière et dans un domaine de concentrations identique à celui de la présente note. Les courbes où l'on a porté en ordonnée l'écart entre la raie de résonance protonique du benzène et celle du cycle du mésitylène en fonction de $X = moles Al_2Br_6/molcs$ C_6H_6 , présentent également une allure voisine de celle de P_{12} , avec des points d'inflexion qui nous paraissent liés à la formation des complexes cités plus haut. Ces points correspondent également aux valeurs simples de X, soit 1/4 et 1/2.

Nous voyons donc qu'il est possible, en étudiant systématiquement la polarisation totale P_{12} et le déplacement d'une raie de résonance nucléaire magnétique, de mettre en évidence une interaction entre des corps tels que le bromure d'aluminium et le benzène. Mais dans une étude de ce genre, il faut que le dissolvant réponde aux trois conditions suivantes:

- 1) être non-polaire;
- 2) n'exercer aucune action sur les molécules individuellement dissoutes;
- 3) donner des solutions homogènes où le rapport moléculaire des deux espèces chimiques dissoutes puisse varier dans de larges limites.

SUMMARY

The authors have investigated the variation of the dielectric constant, the density and the refractive index of dilute solutions of Al_2Br_6 in $CS_2 + C_6H_6$, with molecular ratios 0,0533, 0,1029 and 0,1773 mole C_6H_6 /mole CS_2 .

It has been found that dielectric constant and caculated total polarisation P_{12} do not vary linearly as a function of the ratio $X = \text{moles Al}_2\text{Br}_6/\text{moles C}_6\text{H}_6$; the diagrams show caracteristic deviations (maxima, minima and «steps»), which may be interpreted by the formation of several polar compounds between $C_6\text{H}_6$ and Al_2Br_6 . This conclusion is supported by a previous study of the nuclear magnetic resonance of the same solutions.

Laboratoire de chimie physique, Université de Genève

²⁸⁾ D. JANJIC, J. DELMAU, B. SUSZ & G. BÉNÉ, C. r. hebd. Séances Acad. Sci. 250, 2889 (1960).